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Abstract. In the scope of warming cities, this work aims to develop a software 

application that predicts overheating of buildings in summer with an accuracy 

comparable to thermal building simulations, but with a significantly reduced 

operational complexity and computational cost. The application will be suited for 

engineering offices as a hands-on assessment tool for energy consulting and when 

planning new or refurbished buildings. 

The approach is to use a Random Forest Regression (RFR) machine learning 

algorithm to generate predictions for the air temperature and operational 

temperature in a room according to given features (room geometry, window 

specifications, shading, wall insulation, etc.). The training of the RFR is conducted 

on the basis of numerous thermal building simulations. These simulations were 

performed using TRNSYS, which has been thoroughly validated and provides a 

great range of possibilities for a trained user. In order to provide a sufficient 

multitude and variety of training data, automation software for TRNSYS was 

developed over the course of this work. 

In this contribution, we report on the first results of predicting summer 

overheating using machine learning with the developed application. More 

specifically, the RFR results are compared to simulation data. 

1. Introduction 

1.1 Motivation 

The German standard DIN 4108-2 [1] regulates summer thermal protection for buildings, aligning 

with the Buildings Energy Act (GEG). Existing methods for determining summer thermal 

protection requirements include thermal building simulation and the normative solar input 

method. While thermal building simulation is reliable, it is time-consuming and costly. The solar 

input method, though simpler, sacrifices accuracy and often overlooks specific local conditions. In 

practice, approximately 90% of projects use the solar input method, despite its limitations. Both 

methods fail to account for future climate change, which is crucial to avoid costly and energy 

intensive retrofitting of the building technology in the future. 



 

 

The project aims to develop a fast, accurate, and cost-effective software tool for evaluating 

summer thermal protection in construction and refurbishment projects. It envisions a consulting 

scenario where clients and consultants use a simple online form to select from current and future 

(predicted by climate models,) weather data analyze building site conditions and discuss the 

results of various refinement options without the need of time-consuming traditional 

simulations.  

1.2 Prediction tool 

The tool should serve as a hands-on assessment tool for energy consulting and therefore must not 

only generate results fast and accurate but visualise effects of changing relevant aspects of a 

building site (building materials, window area, floor area, ceiling height, etc.) too. Hence the goal 

of the software is to predict the air temperature (TAIR) and the operative room temperature (TOP) 

hourly throughout the year for a room, using the latest weather data available from the Deutscher 

Wetterdienst (DWD) [2] to attribute the surrounding microclimate. Afterwards, the 

overtemperature degree hours are calculated in compliance with DIN 4108-2 [1]. 

The Random Forest Regression (RFR) machine learning algorithm was chosen as a prediction 

tool and numerous automated thermal simulations for various parameter and climate 

combinations were conducted in TRNSYS [3], a widely recognised tool in building performance 

analysis, to synthesize the needed amount of training data. 

1.3 Choice of ML algorithm  

The RFR of the scikit-learn Python package [4,5] was selected as the machine learning algorithm 

for this study due to its robustness, interpretability, and efficiency in handling complex, non-linear 

relationships within the data. RFR constructs multiple decision trees during training and outputs 

the mean prediction, enhancing accuracy and reducing overfitting [6],which is particularly 

important when dealing with high-dimensional data such as the thermal characteristics of 

buildings. It is well-suited for capturing interactions between features like room geometry and 

environmental conditions, and it provides insights into feature importance, aiding in informed 

decision-making for energy consulting and building design. 

However, it is important to note that RFR has certain limitations. It does not extrapolate well 

beyond the range of the training data, due to its nature of predicting an average of the values seen 

in the training phase. Secondly, it is unfeasible to use it as a “simulation engine“ and predict one 

sample at the time as the prediction time does not scale linearly with the size of the test dataset. 

By leveraging the strengths of RFR and addressing its limitations through careful data 

preparation, this study aims to develop a practical and efficient tool for predicting time series for 

TAIR and TOP in buildings. 

2. Methods 

In this study, synthetic data generated through thermal simulations using TRNSYS [3] were 

employed. This approach theoretically allows for an almost limitless supply of data, which is 

crucial for training effective machine learning (ML) models. The primary challenge lies in 

generating data with high information density and variance within the feature space, ensuring 

that the model can generalise well to unseen scenarios. For clarity in this paper features are 

defined as the input for the ML model while the inputs for the simulations are called parameters.  



 

 

2.1 Defining the feature space 

To align with the requirements of the German standard DIN4108-2 [1], which outlines 

essential parameters for building energy efficiency during the cooling period, we defined a 

standardized room configuration. This configuration is essential for training an RFR, a supervised 

machine learning algorithm that requires comprehensive training data covering the entire feature 

Table 1. Training data is generated by simulations of rooms. The rooms differ within the limits of the 

following features: 

Feature Description 
Lower 
limit 

Upper 
limit 

Unit 

Room characteristics 

Length 

Cubic measures 

3,0 10,0 m 

Width 2,5 6,0 m 

Height 2,4 4,0 m 

Floor 1: ground floor, 2: middle floor, 3: top floor 1 3 - 

U_ext_wall 

Thermal transmittances of room-bounding structures 

0,1 3,0 Wm-2K-1 

U_roofa 0,1 3,0 Wm-2K-1 

U_ground_floora 0,1 3,0 Wm-2K-1 

U_adjacentb 0,5 3,0 Wm-2K-1 

Ventilation  Total air exchange rate. 0,25 5,0 h-1 

Internal_Gain Heat contributions from internal sources. 0 50 kJh-1m-2 

Capacity Thermal capacity per unit ground area. 0 150 Whm-2K-1 

Window characteristics (for each window) 

Win_wall_ratio Ratio of window compared to the facade area. 0,001 0,97 - 

Frame_win_ratio Ratio of frame area compared to the window area. 0,01 0,4 - 

U_window Thermal transmittances of window. 0,7 5,6 Wm-2K-1 

G_window Total solar energy transmittance. 0,14 0,84 - 

Fc External shading factor on solar gains. 0 1 - 

Environmental factors 

RADOSc Total short-wave radiation on the vertical window 0 1000 Wm-2 

T Ambient air temperature. -20 37,2 °C 

N Cloudiness of the sky. 0 8 1/8 

a Used, even if room is in a middle story 
b Not a feature of the current RFR but considered in the simulations. 
c Calculated by RADOS Module 



 

 

space of future predictions. A standard room (see fig. 1a) in this study is assumed to be a cuboid 

with one or two facades, each containing a window. The room can be located on the ground floor, 

middle floor, or top floor of a building. Per definition [1], the air temperature within the room is 

assumed not to fall below 20°C and no active cooling is to be applied. This simplification allows 

for a consistent comparison of thermal behaviours while maintaining realistic boundary 

conditions. The selected features are categorised into three groups: room characteristics, window 

specifications, and environmental conditions. All features, as outlined in Table 1, vary within 

predefined limits, which were chosen based on physical necessities, DIN requirements, or use 

cases suggested by the industrial partner in this research project. 

To determine the solar radiation energy input for vertical surfaces, a RADiation On Surface 

(RADOS) module was developed. This module converts the beam and the diffuse radiation on a 

horizontal surface, provided by the German Test Reference Year (TRY) weather data files [2,7], 

into radiation on a tilted surface. It follows the descriptions of Chapter 1 and 2 of „Solar 

Engineering of Thermal Processes, Photovoltaics and Wind“ [8], where the solar radiation 

incidence angle is calculated in terms of the slope and azimuth of a surface [9] and the diffuse 

radiation is estimated by the Reindl model [10]. 

2.2 Automated simulations 

To efficiently generate the necessary volume of data, a TRNSYS-Python API was developed. This 

API automates the creation of input files for TRNSYS building simulations and executes the 

simulations, bypassing the time-consuming manual process of using TRNSYS's graphical user 

interface (GUI). A reference building model, designed as a cuboid with 24 standard rooms, was 

initially constructed and saved as a .b18 file, serving as a template modifiable via Python. 

Throughout the study, a Python package was developed to mimic the organizational structure 

of TRNSYS's multizone building environment. This package includes classes representing various 

TRNSYS components, such as LAYERS, SCHEDULES, CONSTRUCTIONS, ZONES etc. or EXTENSIONS 

like the WINPOOL and BuildingGeometry. Users can modify building parameters by following the 

logic of the TRNBuild GUI, and the package allows for the extraction of room-specific features from 

the building model, even if they are not directly set as parameters. These features include: 

-  Length, Width, Height: Calculated as distances between vertices in the BuildingGeometry 

class. 

- U_construction: Calculated in the CONSTRUCTION class using the specified thickness and 

conductivity values from the LAYER class. 

- Capacity: Determined in the CONSTRUCTION class according to norm DIN 4108-6 [11], 

using thickness and conductivity, capacity, and density values from the LAYER class.  

- U_window, G_window: Extracted from the WINPOOL class. 

- RADOS:  Derived from TRY weather data files, with slope and azimuth extracted from the 

building model. 

 To achieve high information density, TRNSYS's capability to schedule parameters like 

ventilation, internal gains, and frame-to-window ratio was leveraged. These parameters were 

varied periodically over the simulation time, generating multiple feature values within a single 

simulation run. Each simulation spans an entire year, producing 210.240 data points for 24 rooms. 



 

 

To introduce further variance, specific features such as floor level, ventilation rates, internal gains, 

window-to-wall ratio, frame-to-window ratio, U_window, G_window, and shading factor (Fc) were 

varied across rooms, while cubic measurements and thermal insulation properties remained 

consistent. 

2.3 Randomised simulations 

The automated simulation routine is fundamental to covering the extensive feature space 

required for this study. RFR do not require grid-like data, as individual decision trees within the 

forest do not consider all features simultaneously. However, training data should roughly cover 

the entire feature space, with features being independent of one another. To achieve this, we 

implemented randomisation strategies in the selection of input parameters for the simulations: 

- Scaling Building Dimensions: Random vectors were generated within the predefined 

limits for length, width, and height. Scaling factors were calculated for each axis and applied 

to every vertex in the BuildingGeometry class, ensuring that the room dimensions varied 

realistically within the constraints. A randomly scaled building is depicted in figure 1b.  

- Scaling Windows: Vertices for exterior walls and their respective windows were 

identified. Random vectors were generated within the plane of the wall, constrained to the 

wall's centre and corners. Scaling factors were then calculated and applied to every window 

vertex, adjusting the window dimensions accordingly (see fig. 1b). 

- Creating Schedules: A pool of weekly schedules was created, where every three hours, a 

random percentage of a features value range was chosen to simulate variations in parameters 

such as ventilation internal gains or frame to window ratio 

- Creating constructions: Random U-value (u_target) within the defined limits were chosen 

(see Table 1). As long as the termination criterion u = u_target ± 0,05 Wm-2K-1 is not achieved 

a construction was created. Its thickness must exceed 0,12 m and its layers can be picked out 

of structural, insulation and/or coating layers (see below), although insulation layers must be 

coated.  

   

Figure 1: TRNSYS Multizone building models, which were used to generate synthetic training data. a) 

Reference building to initiate the automation. b) Building model after randomization.  

a b 



 

 

- Picking layers: TRNBuild provides a library of construction materials. The library 

contains coating material, found within the wood, stucco or building board materials, 

insulation material, defined by a conductivity λ  ≤ 0.06 Wm-1K-1 and structure material like 

stonework or concrete. 

- Picking weather: A new TRY file is randomly selected before every simulation. 

2.4 Data preprocessing and training 

The simulated TAIR and TOP data follow an annual cycle, leading to an imbalanced distribution of 

target values (see fig. 2a) and a significantly reduced prediction accuracy for minority values. 

Specifically, the constraint on room air temperature (see section 2.1) results in nearly half of the 

generated data points having a value of 20° C, which lead us to generally exclude them. To further 

address this issue, the following preprocessing steps were applied and resulted into figure 2b:  

- Only rooms with over temperature degree hours of 400 or more and plausible window-

to-floor ratios were considered. 

- Data was limited to the period from 1. May to 31. August to focus on the most relevant 

summer months.  

- The dataset was split into two subsets: one for corner rooms (with two windows) and one 

for middle rooms (with one window), as the number of features differs between them. 

Consequently, a separate RFR estimator was trained for each subset. 

Before training the RFR to predict the operational temperature, the room temperature must 

first be predicted. This is necessary to comply with DIN 4108-2 [1], which allows for dynamic 

adjustment of ventilation based on TAIR and ambient temperature T. This poses a challenge, as 

predictions can only be made on complete datasets, not on individual data points (see section 

1.3). To address this, the feature TAIR_before was introduced as a short-term memory for the RFR 

model. During training, TAIR_before is set to the room temperature from the previous time step. 

For predictions, TAIR_before is updated with the results from the last prediction, and the process 
is repeated until a stopping criterion is met. TOP uses then the obtained TAIR values as additional 

  

Figure 2. Histograms of the TAIR target values in the middle room dataset before (a) and after (b) the 

data preprocessing. Both show a significant underrepresentation of target values above 30° C. For both 

plots data points where TAIR = 20 °C were omitted. 



 

 

feature to incorporate the now gained short-term memory but to avoid the time-intensive 

convergence method. For the training of the TOP estimator the choice of data was only constraint 

by considering rooms that reach 400 or more overtemperature degree hours. 

3. Results and discussion 

 At the current state 2400 rooms were simulated, resulting in more than 300·103 data points for 

training a single RFR estimator. Figure 3a and 3b compares the predictions of our trained model 

with simulation results for a middle room. The room, with an area of 12 m², is on the upper floor, 

with a 4.8 m² south-facing window using sun protection glass and external shading. The roof and 

window are insulated, while the walls are not.  

The RFR predictions for TOP closely follow the simulated results, particularly in the 22° C to 30° 

C range. However, the model struggles to predict values above 30° C, likely due to imbalanced 

training data. Additionally, the predictions exhibit an overestimation of temperatures below  

20.5° C. It is attributed to the current method of preprocessing of TAIR data (see 2.4). For the sake 

of improved accuracy of high temperature predictions data points of the heating period are 

underrepresented in the training data. This shows the necessity to further investigate and 

improve the method of data preprocessing. The model also shows sensitivity to the short-term 

memory feature, TAIR_before, indicating that the temporal coherence of predictions is not fully 

captured. 

4. Conclusion and outlook 

In this study, we developed a method to predict air temperature (TAIR) and operative temperature 

(TOP) in a room throughout the year using a Random Forest Regressor (RFR). To synthesise the 

necessary training data, we developed software to automatically simulate randomised buildings. 

To capture temporal sensitivity, we introduced the feature TAIR_before during data preprocessing, 

providing the estimator with a short-term memory. Our model demonstrated qualitative 

validation in the temperature range of 22° C to 30° C. However, to enhance the model's 

      

Figure 3. a) Comparison of the operational temperature (TOP) when predicted by  the RFR and by a 

simulation (SIM) of a middle room.  b) Differences between the RFR prediction and the simulated TOP. 



 

 

applicability as a tool for predicting overheating in buildings, further improvements in accuracy, 

particularly for higher temperature values, are necessary.  

Future work should focus on implementing over- and under-sampling algorithms to address 

imbalanced training data, generating new training data with a bias towards warmer rooms and 

without the constraint of a minimum air temperature of 20° C, refining the short-term memory 

mechanism, and reducing the number of features to create a more generalized model capable of 

predicting temperatures in non-standardized rooms. By addressing these aspects, the RFR model 
can be further refined to serve as a practical and efficient tool for energy consulting and building 

design, ensuring buildings are better equipped to handle future climatic conditions. 
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